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A method for obtaining analytic solutions to the problem of blunt bodies in the 
supersonic stream of an ideal gas is presented. The solutions are written in terms 
of power series whose coefficients are elementary functions. These solutions are 
approximate, but the approximation is rational, i.e. any higher approximation 
can, in principle, be obtained. Some of these higher approximations have been 
calculated. Examples are presented for various free-stream conditions and pre- 
scribed body shapes. These are compared with results from standard numerical 
procedure and with available experimental measurements. 

1. Introduction 
Calculation of the supersonic flow past a blunt body is an interesting as well as 

an important problem in aerodynamics. At present, the solutions to such prob- 
lems are generally obtained by numerical schemes. In  spite of the many analytic 
approaches proposed over the past two decades, an analysis of this problem is 
still in demand, since severe restrictions are usually imposed in order that the 
resulting equations be solvable. The present study presents an analytic solution 
in terms of elementary functions. This analytic method shows good agreement 
with numerical results computed by a standard method (the marching technique) 
and with available experimental measurements. 

In  this approach the method of series truncation has been re-formulated so 
that the strong coupling between the truncations is removed and it becomes 
possible to obtainananalytic solution. In  previous formulations, the higher-order 
terms which appear in the lower-order equations usually involve pressure, or 
density (or its equivalent). These higher-order terms are truncated only to reduce 
the number of variables so that the number of unknowns matches the number of 
differential equations. The magnitudes of these terms dropped in the truncation 
are usually as large as the magnitudes of the terms retained. However, if we use 
Bernoulli’s equation to replace the normal momentum equation in the original 
system of governing equations, the higher-order terms in each truncation become 
the velocity components normal to the body or the shock wave. Since in hyper- 
sonic flow the velocity components normal to the body or shock are much smaller 
than the tangential components, the truncation of the higher-order terms can 
then be argued on the basis of the order of magnitude comparison. Thus, one may 
consider the present approach to be a more rational truncation since terms are 
not dropped merely to reduce the number of variables. Furthermore, if additional 
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terms which are of the same order as the ones dropped are to be neglected, the 
new system of equations can be solved analytically. It was found that at  least to 
the third-order of approximation, which has so far been determined, solutions 
can always be expressed in terms of elementary functions. Since these are 
‘rational’ approximations, any higher-order approximations can, in principle, 
be obtained. 

Since the solution to the truncated equation is obtained in closed form, this 
method treats both direct and inverse problems. A direct problem is defined here 
as one with a prescribed body shape for which the shock shape is to be determined; 
while an inverse problem is one with a prescribed shock wave shape and an un- 
known body shape which is to be determined. 

The complexity of the blunt body problem is due to the fact that near the stag- 
nation point the flow is subsonic and has a detached shock wave as its boundary 
whose position is not known apriori. However, in the problem of any practical 
interest, the shock position and the shock shape are not known and are a part of 
the problem to be determined. Thus, a portion of the boundary conditions cannot 
be prescribed beforehand and must be determined simultaneously with the overall 
flow field. A trial-and-error procedure is inevitably needed for predicting the 
subsonic flow field of a given blunt body in a supersonic stream (the finite differ- 
ence method, which will be briefly reviewed later, brings out this process in a 
different manner). The procedure in most of the existing methods is simply to 
repeat the solution many times until it satisfies the prescribed conditions. The 
situation is somewhat simpler here because of the analytic nature of the solution 
which is in the form of algebraic equations. These algebraic equations are, how- 
ever, non-linear in general, and a trial-and-error procedure is again needed to 
obtain the proper roots. 

Many investigators have attackedthe blunt body problem in the past. A review 
of these works can be found in Hayes & Probstein’s (1959) monograph. Sub- 
sequent to the review in that book, a number of interesting studies have been 
published, including the following :* 
(a) A series truncation method was developed by Swigart (1963) and Bazzhin 

& Gladkov (1963). Their scheme is to expand the flow variables in a series form 
about the stagnation point. Substitution of the series expansions into the govern- 
ing equation yields a system of ordinary differential equations which are trun- 
cated and solved by numerical integrations. Since the subsonic zone is near the 
stagnation point, and is thin, one would expect this method to yield sufficiently 
accurate results using only a few terms in the series. There are, however, an un- 
limited number of ways to expand the flow variables. In  retrospect, Swigart’s 
choice seems to be a rather unfortunate one, the convergence of some of his series 
expansions being rather slow. Modifications which provide better convergence 
are now available (see, for example, Conti 1964; Van Dyke 1965). In  particular, 
Van Dyke (1965) selected an inverse problem using a paraboloidal shock wave 
and carefully computed the resulting flow field by four different numerical 
methods. The results obtained by three of these methods were found to be 

* Since submission of this paper, a new edition of the monograph has been published 
which contains a complete and up-to-date survey of this subject. 
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identical to four significant figures throughout the subsonic field. He, therefore, 
regarded this as a standard example against which other methods are to be tested. 

( b )  By using thin shock-layer approximation, an analytic method was de- 
veloped by Maslen (1964). This method predicts the flow field in the transonic 
region, but it has some difficulties near the stagnation point. In a recent paper 
Cheng & Gaitatzes (1966) presented a thorough exploration of uniform validity 
of the shock-layer approximation and a method analogous to MasIen’s. The 
difficulty in the nose region was removed, and their results show good agreement 
with the more exact numerical results for both simple and very blunt shapes. 

(c) A modification of the integral (Belotserkovskii) method for direct calcula- 
tion of blunt body flow fields was discussed by Kao (1965). Because of numerical 
instability, the original Belotserkovskii’s scheme is not a practical method. A 
transformation is introduced which transplants the singularity from the differ- 
ential equations to the algebraic equations. Thus, the magnitude of the problem 
of the numerical instability is greatly reduced. 

(d )  A finite difference method using ‘artificial viscosity’ was recently ap- 
plied by Bohachevsky, Rubin & Mates (1965) to the blunt body problem. The 
numerical scheme is essentially based on Lax’s (1954) work in unsteady flow. A 
grid is superimposed upon the flow field. The spatial derivatives in the governing 
differential equations along the lines making up the grid are approximated by 
one-level finite difference quotients. The time-dependent difference equations are 
then solved numerically by proceeding in time until steady state flow is reached. 
The artificial viscosity was introduced to keep the numerical scheme stable, 
Though this method is quite approximate and sometimes gives physically un- 
reasonable results,it has the advantage of being versatile. For instance, it has been 
used to tackle the blunt body non-equilibrium flow problem at angle of attack. 

2. Formulation of problem 
The problem that we shall consider here is that of an axisymmetric blunt body 

at zero incidence in uniform inviscid supersonic stream. The fluid medium is 
assumed to be an ideal gas with constant ratio of specific heats. A spherical polar 
co-ordinate system is used, and is shown in figure 1, together with the velocity 
components where the bar denotes a dimensional quantity. It is convenient to 
refer the radial distance r to the shock nose radius of curvature at the stagna- 
tion streamline, the tangential and normal velocity components Ti and V to the 
free-stream velocity urn, the density p to the free-stream density prn, the pressure 
1, to pm?7z, and the enthalpy E, to g:. The equations of motion in dimensionless 
quantities (quantities without bars) are then 

a a 
ar ae - (pvrz sin 0) + - (pur sin 0) = 0, 

au uau  uv 1 ap v-+--+-+-- = 0 
ar r ae r prae ’ 
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p = e p h ,  
Y 

where y is the ratio of specific heats. Equations (1)-(5) are, respectively, the 
equations of continuity, tangential momentum, normal momentum, energy and 
state. Since the differential equations and the formulation of the problem vary 
only slightly between the two-dimensional and rotationally symmetric cases, the 
former is not considered here. The reduction to it is, however, straightforward. 

Shock 

FIGURE 1. Flow configuration. 

We can integrate (4’) and substitute Bernoulli’s equation for (3‘). (The parti- 
cular expansion scheme used later requires that Bernoulli’s equation be substi- 
tuted for the normal momentum equation rather than for the tangential 
momentum equation.) The system of differential equations now reduces to  

where k = (y  - 1)/2y,  the subscript 0 denotes the flow quantity evaluated at the 
stagnation point on the body surface, and @ is the stream function which is 
defined by 

Although it is possible to replace the velocity components in (2)  and (3) by the 
stream function, i t  is not convenient here. Hence, we still retain (1) and use the 

a$.jar = pursin 8, a$/aO = -pvr2sin8. ( 6 )  
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stream function in (4) only as an intermediate parameter for expansion. The final 
results will be expressed as functions of the velocity components. 

The equations of motion, ( 1)-(4), are subject to the boundary conditions a t  the 
shock and the body surface. The shock conditions are obtained from the Rankine- 
Hugoniot relations in terms of the shock angle $ and the free-stream Mach num- 
ber M, as follows: 

p, = [ (y  + 1)Mi sin2 $ ] / [ ( y  - 1)M: sin2 $ + 21, ( 7 )  

p s  = [ 2 y x %  sin2 $ - (7 - l)l/"I'(Y + 1)M%1, (8) 

m, = cosq5, (9) 

ns = [ ( y  - 1)M: sin 2$ i- 2]/[(y + 1)M: sin2 $1, (10) 

where the subscript s denotes the flow quantities immediately behind the shock 
wave, and m and n are the dimensionless velocity components tangent and 
normal to the shock wave respectively. 

The body surface condition is simply that a t  the body the direction of the flow 
must be tangential to the body surface. 

3. Method of expansion 
It is a general practice to obtain solutions of linear differential equations by 

means of Taylor series expansions. But, when this method is applied to non- 
linear differential equations, it  is usually impossible to find the general terms. 
However, if we assume that the variables in the shock layer are analytic, the 
method of series expansion is applicable, though the radius of convergence may 
not be easily estimated. In  some cases the series may even be divergent. How- 
ever, in solving a physical problem a divergent series may sometimes be more 
suitable to the purpose than a convergent one. This point is well illustrated in 
Van Dyke's (1964) monograph. Hence, no effort is made here to show that the 
following series expansion is a mathematically convergent one. (For want of a 
better terminology, the word 'convergence' has been used loosely to refer to 
better agreement with the standard numerical results. The same connotation is 
also implied below.) We shall demonstrate that the analytic solution agrees well 
with the numerical results and the available experimental measurements. 
Furthermore, we will also show that within the subsonic region the final result is 
subject only to  a small modification if we calculate one more term in the series 
expansion. It is, nevertheless, instructive to estimate roughly the radius of con- 
vergence of the following series expansion by following the procedure in Ince's 
(1926) book. The radius so obtained falls approximately half way between the 
stagnation streamline and the sonic line. 

As noted above a subsonic region exists about the stagnation point of a blunt 
body in a supersonic stream. The extent of this region is, however, rather limited. 
It is bounded by the detached shock wave, the blunt nose and the sonic line. 
The shock detachment distance is, in general, only a small fraction of the nose 
radius. This is especially true when the incoming stream is hypersonic. Moreover, 
the angle formed between the stagnation streamline and the sonic line is generally 
less than an. Hence, we may expect that the flow variables can be expressed by 
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a power series in sine, and that a few terms of the series solution will describe 
the flow field satisfactorily if the shock layer is relatively thin and the backward 
influence is weak. This expansion has been used and substantiated by Swigart. 
The convergence of these series can be greatly improved if the proper variables 
are used. In  fact, Van Dyke (1  966) has shown that in one case a two-term approxi- 
mation agrees closely with numerical results. 

The expansion scheme used here is: 

u(r,  8) N ul(r) sin 8 + zc2(r) sin3 8 + u3(r) sin5 0 + . . ., 
w(r, 8) - - cos 8[vl(r) + v2(r) sin2 8 + v3(r) sin48 + ...I, 
p ( r ,  8) N cos2 8[nl(r) + n2(r) sin2 8 + n3(r) sin4 8 + . . .I, 
p(r, 0 )  - p l ( r )  +p2( r )  sin2 8 + p 3 ( r )  sin4 8 + . . ., 
$(r,  8) N g[$l(r) sin2 8+ $,(r) sin4 8 + $3(r) sin6 8 + . . .I, 

( 1 1 4  

(1lb)  

Pic) 

( 1 1 4  

( 1 1 4  
where 

$1 = plvlr2,  @2 = 4 r 2 ( p 1 v 2 f P 2 v 1 ) ,  @3 = $ r 2 ( p 1 v 3 + P 2 v 2 + P 3 w 1 ) .  

In  addition to the above series expansions of the flow variables, we must also 
expand the function f in (4) 

f(@) N ~ + 2 b $ + 4 d @ ~ + 8 e @ ~ + . . . ,  (12) 

where the coefficients b, c, d, e are constants which can be determined by using 
the Rankine-Hugoniot relations. The reason for the expansion off in the form 
of (12) can be easily seen if we express the quantity p / p y  behind the shock wave 
in terms of the shock angle by the Rankine-Hugoniot relations. Then we can 
relate the shock angle to a position on the shock wave, which in turn can be 
related to the stream function. This type of expression can be found in Swigart 
(1963). On the other hand, since (4) is the integral form of the energy equation 
(4’), the expanded form of (4) must be the same as that of (4’) integrated separately 
after substitution of the variable expansions. Substituting (1 1 a)-( 11 d )  into (4’) 
and collecting the coefficients of like powers of sin 8, we obtain the first- and higher- 
order equations. After we convert the velocity components in these equations to 
the stream functions @l,  $2, . . . by (6) and (1 1 e ) ,  they can be readily integrated, 
especially the first- and second-order ones. These integrated equations then lead 
to the expansion off in the form of (12). The expansion of the pressure p ,  in the 
form given in (1 1 c) was inspired by the hypersonic Newtonian approximation 
and was first suggested by Conti (1964 or 1966). 

We substitute (1 1 a)-( 11 e )  and (12) into (1)-(4). Equating like powers of sin 8, 
we obtain the following system of equations: 

r(Plv1)’ - 2Pl(Ul - v1) = 0, ( 1 4  

P2 u1 

r 2 - -P1481 + P l y  (% - 



P2 

P1 P1 
23 -pl  7 + k(Uf - w; + 2v1v2) = 0, 

P2 

P1 
P2 = bPr $1 + YP1- , 

&-P@+E (&I3) + k(V?j+ 2U1U2- 2v,v2+ 2v1v,) = 0, (3 c) 
P1 Pf P? P1 

p ,  = bp: $, + bypr-lp, $l + ‘ P p l  $ + ypl  + dpr @;, (4c)  
P I  P I  

where the prime refers to differentiation with respect to r ,  pl = rrl, p 2  = rr2 - rrl 
and p ,  = rr3 - rr2. 

This list of equations is endless. However, these ten equations are sufficient 
(actually too many) for obtaining the solutions for all the flow quantities with 
the subscript 1 and 2 (the first- and the second-order quantities) to the second 
iteration. Four additional equations of the next higher order are written in an 
appendix, and will be used to obtain the solution for the third-order quantities. 
Equations (1 a)  and (1 b) are the expanded continuity equation, (2a) and (2 b)  the 
expanded tangential momentum equation, (3a ) ,  (3b)  and (3c)  the expanded 
Bournoulli’s equation, and (4a ) ,  ( 4 b )  and (4c)  the expanded entropy equation. 

For clarity, it is necessary to distinguish between order and iteration. By order 
we refer to the sequence of coefficients in the power series expansions of (1 1 a)- 
(1 1 e ) ,  which is denoted by their subscripts. These coefficients are, however, some 
unknown functions of r,  and are governed by differential equations which are to 
be solved by iteration. For instance, a quantity with the subscript 1 always 
represents a fk-st-order quantity, but it may have many different values obtained 
by different levels of iteration. A higher level iteration indicates increased 
accuracy for the expression representing the coefficient. For instance, a third- 
order approximation implies that each flow variable is described by a three-term 
series, as in (1 1). If these coefficients are all in the form of the highest iteration 
possible within the accuracy of the third-order approximation, it is then called 
the ‘complete ’ third-order approximation. As we shall see later, for each order 
approximation there is a maximum number of iterations for which consistent 
results are possible. 

We now have the necessary equations for determining the first- and the second- 
order variables. In  order to make use of the boundary conditions, they must also 
be expanded according to (1 1 a)-( 11 e )  and (12). However, since their availability 
is not essential for solving the above differential and algebraic equations ( la ) -  
(4c) ,  their presentation is deferred until later. The coefficients c, b and d in (4a), 
(4b )  and (4c) are constants determinable at the shock wave by using the expanded 
Rankine-Hugoniot relations, provided that the shock wave shape is prescribed. 
If the body shape, instead of the shock wave, is prescribed, these constants will 
have to be determined as a part of the solution. 

Supersonic blunt body problems 795 
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4. Method of analysis 
The analysis is essentially based on one assumption, well known in hypersonics, 

that vl, v2, . . . are small quantities as compared with the rest of the flow quantities, 
such as p,, ul,pl, ..., which are, in fact, of order unity. It is to be noted that 
po, pl, . . . are not of order unity, but that povl,plvl, . . . are. Though vl, v2, . . . are 
small quantities, their derivatives, vi, vk, . . . are of the same order of magnitude 
of pl ,  ul, . . . . Notice that near the stagnation streamline the actual velocity 
components of u and v are small and of the same order, but it does not imply that 
u1 and v1 are of the same order, since the u and v involve the angle 0 as shown in 
( l l a )  and ( l l b ) .  

First, we shall consider ( l a ) ,  (Za), (3a) ,  (4a) ,  (3b) and (4b) only. Notice that 
these six equations contain seven unknown variables. However, the seventh 
variable, v2, which appears in the form of 2vl vz only, can be neglected as compared 
with u!. It is then possible, in principle, to obtain the solutions of ul, vl, p,, pl, p 2  
and p2. 

Eliminatingp, in (3b) from (4b),  we have 

P2 = -Pl(tu! - avz, + V l V ' J  - bPl$l/(Y - 1 )  c. 

u; = - (ul/r) + (vl/r) - (2v2/ r )  - 2bplr/(y - 1)c. 

(13) 

(14) 

Substituting (13) in (2a)  gives simply 

Using the assumption that vl, v2 are an order of magnitude smaller than u1 or 
pl,  we can write this equation in the form of the first iteration as 

u; = - (ul/r)-  2bp1r/(y- 1)c. (14a) 

This equation is readily integrable, provided that pl can be written in terms of r .  
Eliminating p1 in (3  a )  from (4  a ) ,  pl can be expanded as 

1-221% 
P1 Po - iPOV21f __ p;v,4- .... 

8Po 
Again, assuming that vl is small as compared with po, we can write for the first 
iteration 

Using the notation that A = 4bp0/(y- l ) c ,  ( l 4 a )  can be integrated as 
Pl = Po. ( 1 5 4  

(16)  u - 1Gr-1-1AyZ 
1 - 2  6 7  

where G is an integration constant evaluated behind the shock wave. Having 
obtained the solution for u1 for the first iteration, we can now determine vl. From 
( 1  a) ,  we have the series expansion of ul as 

As above, this equation can be simplified to 

u1 = 8.v;. 
v 1 -  - E - Gr-1 -+A+, Using ( 1  6 ) ,  

where E is also an integration constant. 
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The calculation for the first iteration of the first-order quantities is now com- 
pleted. The second iteration to be given later is essentially to improve the 
accuracy by including the next order terms so far neglected. 

We can now immediately test the accuracy of our solutions for the first itera- 
tion. Assuming that the shock wave is spherical (to this approximation all shock 
waves are spherical), the integration constants can be evaluated behind the shock 
wave, i.e. a t  r = 1, and the standoff distances at various Mach numbers can be 
determined by evaluating (18), i.e. by setting v1 = 0 at the body surface. Some 
results are shown in table 1. 

Standoff distances? 

Spherical shocks 
by Van Dyke 85 

M m  Y From (18) From (18c) Gordon (1959) 

3 1.4 0.133 0.138 0-136 
4 1 -4 0.120 0.118 0.121 

10 1.4 0.100 0.097 0.102 
104 1.4 0.096 0.093 0.098 

TABLE 1 

In view of the approximations required to determine the first iteration, the 
agreement is quite remarkable. Note that (18) is a third-degree algebraic equa- 
tion, which has two other roots in addition to the one related to  the standoff 
distance. These two roots are not necessarily imaginary, however they can be 
rejected on the grounds that they do not agree with experimental results. 

Two other approximations to (14) and (17) were found, but they were not 
necessarily consistent with the present argument of the first iteration. These were: 
(i) to add a term v1 to (17a), and (ii) to add a term vl/r to (14a) and a term v1 to 
(17a). The resulting equations can also be solved exactly. The calculated value 
of the standoff distance is, however, less favourable. 

By applying the boundary conditions immediately behind the shock wave and 
on the body surface, we can reduce (18) to 

Ar3 - (3A + 12 + 6vls) r + 2A + 12 = 0, (18a) 

where vl, is the value of vl behind the shock wave at the stagnation streamline, 
and is given by 

One root of (18a), which is the standoff distance, is nearly unity and can be shown 

VlS  = [ 2  + (y - 1) N%-j/(y + 1) M2,. 

to be 

where A = 1 - r,  the standoff distance. In this approximation, terms involving 
A3, v&., etc. are neglected. Substituting the expressions for vls and A into (18b) 

t All the dimensionless standoff distances in tables 1-4 are referred to the shock radius 
of curvature, R,. 
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and carrying out some further simplifications, we find an explicit formula for the 
standoff distance in terms of y and Ma 

y - + 3 +pot + --I (Y - + 2 2 ( 1  +?Poi + Y - 1  16y Pot) j@- 1 (18c)  
4(Y + [ y  4p0t ( ~ + 1 )  m 

A =  

where pot is the limit of dimensionless Rayleigh pitot pressure as M ,  -+ 03, which 
is a function of y alone. In  obtaining (18c) ,  terms involving ( y -  1)2 / (y+ 1 ) 2 M % ,  
etc. are neglected. Some numerical examples of this formula can be found in 
table 1. They show satisfactory agreement with the results obtained by other 
methods. 

Before we can work out the second iteration of the hst-order quantities, we 
must obtain the first iteration of the second-order quantities, because v1 and v2 
are of the same order of magnitude and we must take both quantities into account 
for the next iteration. 

The equations to be used for determining the quantities u2, v2, p 3  and p3 are 
(16), (2b) ,  ( 3 c ) ,  (4c) ,  etc. First, eliminatingp,from ( 3 c )  and ( 4 c ) ,  we have 

Substituting (19)  in ( 2 b ) ,  we can obtain 

In this expression the last terms within the parentheses can be neglected for the 
first iteration, since they are of smaller magnitude than the other terms. By the 
same arguments which allowed the quantities p l  and p1 to be written as po and 
po, v1 can be expressed as in (18) ,  and p2 is obtained from ( 3  b)  and (4b)  by elimin- 
ating p2. After neglecting the small terms a simplified form is then 

p2 u: b 
p pgvlr2. 

2 -  Y P o 2  ( Y - l ) C  

After simplification, (20) is now integrable and the result is 

(21) 
u2 = Hl -+H2-H,r3+H41'4+H6fi, 

r 

where HI is an integration constant, and H,. ..H6 have the following form: 

1 b  
- 4 ( y - l ) c  PO G 2 7  

H - ____  

4 d  
po AE - - ___ PoPoE, - 10 ( y -  1)c  5 (Y - 1)c  

H Y b  
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Using ( 1  b) ,  after some manipulations, we find the solution of v, to be 

f Lo + + L,r2 + L3r3 + L 4 T 4  + L61.6, (22)  

where J is an integration constant and the coefficients L, are 

L, = 

L, = 

L4 = 

L6 = 

b 
POGE, L, = ~ PO E 2 7  

1+8y b 
37 ( Y - l ) C  (7 - 1)c  

7 - 3 7  1 b 4 d  
Po Po G, 

8 d  
p 0 A E - -  ~ PoPoE, 

poA2+- ~ POP0 A- 21 (7- 1)c  

15 (7- l ) ~  

1 d  8-37  1 b 

Now we are ready to calculate the second iteration of the first-order quantities. 
First, we express p ,  in the form of the second iteration by taking one more term 
in (15) ,  

= Po- 4POVE 

or ~1 = p o  - &pO(E - Gr-l- *AT,)', (23)  

where the bar underlining a symbol refers to the second interation quantity. 
Next we substitute ( 1 8 ) ,  (22)  and (33) into (14).  After integration, we find that 
u1 of the second iteration is 

u1 = L-,Gr-3 + 2 J r 2  + 2EL_,r-, - ( 8 4  + G)r-l log r + So - 

+ S,r + S,r2 + X,r3 + S4T4 + S6rS + Xr-l, (24)  

where S is an integration constant, and the coefficients So, S,. . . are 

Similarly, from (17) ,  by writing u1 as 

u1 = v1+ 8 r P -  (Pov;/7Po)l4 

we can find the solution of vl for the second iteration to be 

v1 = I + I_3 r-, + I-, r--2 + I-, r-l+ I-, r--1 log r + I; log r + I, r - 

+12r2+13~3+14T4+16~- ~ X T - ~ + + ~ ~ ( E -  Gr-1-&4r2)3/ypo, (25)  
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where I is an integration constant, and the coefficients Ii are 

I-, = -gGL-,, I-2 = -2(J+EL-,), 1-1 = 16H1, 

IL1 = 2(8Hl+G) ,  I; = 2(X0-E),  I ,  = 2s, 

.I2 = X2 + QA, I 3 - 3  -2s 3, I4 = is,, I6 = +X6. 

Thus far we can describe the flow field in the shock layer of the complete second- 
order approximation in terms of elementary functions. In  summary we can write 

( 2 6 )  I u(r,O) = ulsin8+u2sin319+ ..., 
v( r ,  8 )  = - v1 cos 8- v2 sin2 8 cos 8- . . ., 
p(r ,  8) = cos2 19(7r1 + 7r2 sin2 19 + 7r3 sin4 I9 + . . .). 

- 

- 

- 
The coefficients u,.. .v2 in the fist two equations are the solutions obtained above, 
and the coefficients in the pressure equation are 

n1 =& as in (23), - 

7 ~ 2  = ~ o - ~ p 0 ~ ~ -  $Ap0v1r2, 

The expressions for ul, v,, u2 and v2 are found in ( 1 6 ) ,  (18), (21) and ( 2 2 )  respec- 
tively, and t’he expression for p 2  is indicated in (20 a).  The pressure equation has 
one term more than the first two equations. This should not be regarded as in- 
consistency; rather it is a term acquired in the process of calculation and is 
included to achieve better accuracy. This will be called the ‘pseudo’ third-order 
approximation. 

In  order to determine the second iteration of the second-order quantities, we 
must obtain the solutions for the first iteration of the third-order quantities. In 
fact this principle of alternate calculations (i.e. higher iterations for lower-order 
quantities are necessarily preceded by lower iterations for higher-order quanti- 
ties) applies to all iterations. Thus, we can, in principle, carry out the improve- 
ment indefinitely in a consistent manner for higher orders and higher iterations, 
if necessary. However, the labour involved in the algebraic manipulation in- 
creases rapidly for the higher iterations. Moreover, it  may not be essential to 
acquire the higher iterations, since the agreement with ‘exact ’ numerical results 
is already good, as will be shown below. We shall, therefore, calculate a few ex- 
amples in the next section using the existing solutions of ( 2 6 )  and make com- 
parisons with numerical results, before the third-order approximation is given. 

5. Calculations 
The equations for determining the various integration constants are given 

above. The boundary conditions for determination of these integration constants 
are the properly expanded Rankine-Hugoniot relations at the shock wave. Un- 
less the shock shape is specified beforehand, the integration constants cannot be 
evaluated explicitly but rather are functions of the shock configuration para- 
meters and the standoff distance. In  order to determine these functions of the 
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integration constants, we must a t  the same time consider the boundary condi- 
tions on the body surface. The end result is then a system of non-linear simul- 
taneous algebraic equations and after solving these equations, a pair of roots 
corresponding to the standoff distance and the shock angles can be selected. 
Once the shock wave shape is known, the integration constants can be easily 
computed, thus the flow field in the shock layer is determined. The co-ordinate 
system for such a direct problem should be chosen in such a way that the body 

Shock c 

.- 

Shock nose 
(sphere) 

FIGURE 2. Shock wave and body configuration. 

surface can be simply described. While it appears that we have formulated a 
truly direct method for a blunt body problem, it should be noted that in order 
to find the roots of a system of non-linear simultaneous equations of high degrees, 
an iteration procedure such as Newton's method must be employed. The process 
is inevitably very laborious. However, if we do not take such a direct course but 
look at it as an inverse problem where the shock shape is prescribed beforehand 
for each computation, the complexity is greatly reduced, since in this way only a 
simple algebraic equation is to be solved. 

For the above reasons, the examples given below are all inverse problems. The 
origin of the co-ordinate system is chosen to lie at the centre of curvature of the 
shock wave (figure a) ,  and the shock wave is expressed in a power series form as 

r, = rc + a sin2 0 + /3sin4 0 + lsin6 6 + . . . , (27) 

where a, /3 and 6 are the configuration coefficients and r, is actually unity. In  
order to be able to carry out a one-parameter iteration and to facilitate compari- 

51 Fluid Mecli. 27 
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son against Van Dyke & Gordon’s (1959) results, the shape of the shock wave is 
assumed to be a conic section. The equation of this conic section is written as 

y2 = 2r, x - Be x2 (28) 

in a rectangular co-ordinate system whose origin lies on the shock a t  the sym- 
metric point. It is then possible to relate Be to the shock configuration coefficients 
in (27) by geometric considerations. The final form is 

rs = re+ &-,( 1 -Be) sin4 6 +&rcBC( 1 - B,) sin6 8 - . .. . (29) 

Notice that the coefficient for sin26 term is missing; this is due to the fact that 
the origin of the co-ordinate system coincides with the centre of the shock 
curvature. 

In  order to expand the Rankine-Hugoniot relations, we must associate the 
shock angle q5 with 8 (see figure 2 ) .  By geometric considerations, the relation is 

sin2$ = sin6@+ .... (30) 

Substituting this relationship in (7)-( l o ) ,  we have 

where the subscripts 1 and 2 refer to the order of approximations. They have the 
same meaning as those used in (1 la ) - ( l l d ) .  The third-order expressions can 
again be found in the appendix. 

The tangency condition on the body surface is that the velocity component 
perpendicular to the surface equals zero. Since the co-ordinate system used here 
was chosen to permit convenient specifications of the shock wave shape, its 
origin coincides with the radius centre of the shock-nose curvature. However, the 
radius centre of the body-nose curvature is, in general, not at the origin of the 
co-ordinate system. We must, therefore, expand the velocity components in order 
to find the normal component a t  the surface. We first assume that the body 
section, which is not necessarily a conic section, can be written as 

rb = r ,+psin28+vsin4~+ ..., (33) 

and then we relate the coefficients p, v, . . . to the velocity components, so that 
these coefficients can be evaluated after the shock shape is specified. Here the 
subscript b refers to the quantity at the body surface and the subscript 0 refers 
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to the quantity at the stagnation point. Note that the coefficient of sin2 8 is not 
necessarily zero. The individual velocity components at r = rb can be expanded as 

03(rb) = v3(r0) + (rb - r O )  wA(rO) f . . * 9 

U1k-b) = U.l(ro)+(rb-rO)U.~(ro)+..., 
................................................................................. 

No symbol is given here to indicate the degree of iterations; the form of these 
expansions is the same for any iteration. Thus, v1 can be actually v1 or wl. Substi- 
tuting these expansions in ( 1  1 )  and using geometrical considerations, we find the 
normal velocity component on the body to be 

qI = - wl(ro) cos 8 - - ul(ro) - 2 - wl(ro) +pv;(ro) + v2(ro) sin2 8 cos 8 - . . .. 
( 3 5 )  

[: tJ2 1 
The third-order term in this equation can be found in the appendix. 

of qI equals zero individually. Thus, we have 
The tangency condition for an arbitrary body surface is that each coefficient 

wl(ro) = 0.  ( 3 5 4  

This condition determines the radial distance of the stagnation point, i.e. the 
standoff distance, for any order of approximation. 

The second coefficient in ( 3 5 )  determines the second-order body configuration 
coefficient. which is 

We shall now discuss briefly how to apply the shock relations as boundary 
conditions to evaluate the integration constants. Because quantities in ( 3  1 )  and 
( 3 2 )  are given a t  r = r,, they must be transferred to the values at r = rc = 1 for 
evaluation of the integration constants. The form of the expansion is very similar 
to those indicated in ( 3 4 ) .  Using the pressure as an example, we have 

Ps = Pl(rc) + P2(rc) sin2 8 + b ) 3 ( r c )  + (P/rc)P;(rC)l sin4 8 + * * * 9 

but by definition at the shock wave 

hence, we have 

ps  = pls  + pZs sin2 8 + p3s sin4 8 + . . . ) 

( 3 6 )  1 P l ( 1 )  = PlS, 

P2(1) = PZS, 

P3(1) = 133S-PP;(1). 

Similar expressions can be obtained from the other flow quantities. Using the 
expanded Rankine-Hugoniot relations in ( 3 1 )  and ( 3 2 )  transferred to rc = 1 ,  the 
integration constants G ,  E ,  H,, J ,  S and I in ( 1 6 )  to ( 2 5 ) ,  and the coefficients c ,  

51-2 
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b and d in  (4a), (4b)  and (4c) can now be evaluated. They, however, contain the 
parameters M,, y and p. A few examples of these constants are 

A 
3 

G = 2 + - ,  

After all the integration constants are obtained, we can then use the tangency 
condition 2rl = 0 to find the roots of (25). One of the roots r = ro is the distance of 
the stagnation point on the axis of symmetry; the others are ruled out on the 
physical grounds. Since this is a ninth degree equation, the roots are found by 
applying Newton’s method. Once r, is known, the coefficient ,.u can be calculated 
easily. Thus, the flow field and the body surface in the shock layer are determined. 
Notice that for a given value of ro the coefficient ,u only determines the body- 
nose radius precisely. For bodies such as spheres, the two-term approximation 
of (33) is a good approximation. But for bodies of more general shapes, a three- 
term approximation may be required. There are certainly limitations in describ- 
ing body shapes by such series expansion techniques, since the series expansion 
is inefficient for very blunt shapes, and may even fail in other cases. 

A number of examples have been computed for various free-stream Mach 
numbers and the shock configuration constants p. The ratio of the specific heats 
was chosen to be 1.4 for all the examples. Both the ‘true’ second-order and the 
‘pseudo ’ third-order approximations have been calculated, but differences are 
not significant. The results of the pseudo third-order approximation are shown 
in figures 3-6, together with numerical results by the marching technique and the 
experimental measurements (Kendall 1959; Xerikos & Anderson 1965). 

Since the shock wave is described by a two-term series, the coefficient p can be 
varied to affect the shape of the body surface. The effect of /3 on the body shape 
near the stagnation streamline is in general very small, but becomes noticeable 
near the sonic line. For instance, in calculating a spherical body the variation of 
/3 affects the body radius. Thus, a trial-and-error procedure must be employed to 
obtain the prescribed bodies. 

Neglecting the terms of small magnitude to simplify momentum equations 
such as (14) is actually equivalent to neglecting them in entropy equations such 
as (13) and (19). We should use the approximate entropy equations consistent 
with the number of iterations. I n  order to evaluate the constant coefficients b, d, 
or e behind the shock wave, the entropy equations must, however, be used. Since 
the entropy equations are in approximate form, it seems reasonable to evaluate 
them approximately. On the other hand, since these coefficients contain the free- 
stream conditions as parameters, they shouId be independent of the approxima- 
tion used. The latter argument is generally favoured here, and for lack of proper 
terminology this will be called the conventional procedure. It was found, how- 
ever, that the approximate evaluation of the coefficients gives slightly better 
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I .o 0.5 0 
FIGURE 3. Spherical body and sonic line configuration a t  M ,  = 6.0, y = 1.4. ---,pseudo 
third-order (constants conventional) ; 0, third order (constants approximate) ; -, third 
order (constants conventional) ; x , Van Dyke & Gordon. 

I I I I I 

Degrees (measured from origin of shock nose) 
00 100 200 30' 40° 50° 

FIGURE 4. Surface pressure distribution a t  M ,  = 6.0, y = 1.4. Theoretical: - , third 
order (constants approximate) ; , third order (constant conventional); ---, Van Dyke 
& Gordon. Experimental: x , Kendall ( M ,  = 4.76); 0. Xerikos & Anderson ( M ,  = 4.93). 
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I I I I I I I I I I I 1 

Sonic line 

/ /  Bod" 

1 *o 0.5 0 
FIGURE 5. Spherical body and sonic line configuration a t  M ,  = 3.0, y = 1.4. x , pseudo 
third order (constants conventional) ; __ , third order (constants approximate) ; ---, 
third order (constants conventional) ; ---, Van Dyke & Gordon. 

1 *c 

P 
0.5 

0 I I I I I 

00 1 oo 20° 30° 40' 50° 
Degrees (measured from origin of shock nose) 

FIGURE 6. Surface pressure distribution a t  M ,  = 3.0, y = 1.4. Theoretical: -, third 
order (constants approximate) ; , third order (constants conventional) ; ---, Van 
Dyke & Gordon. Experimental: x ,  Kendall (M,  = 2.81); n, Xerikos & Anderson 
(Ma = 3.0). 
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results. Both approaches were taken for computing the examples. The results are 
shown in figures 3 to 6. 

To recapitulate, the procedure for computing the flow field of a blunt body in 
a uniform free stream is as follows. 

(a)  Assume the shape of an initial shock wave. 
(b)  Relate the shock angle q5 to the polar angle 8, and evaluate (31) and (32). 
(c)  Determine the constants c, b, d and the integration constants, which in 

(d )  Let v1 = 0 in (25) and find the roots of this equation. 
(e) Determine the coefficient p. If the value of this coefficient is not within 

acceptable limits of the prescribed value, we must assume a new /3 and repeat 
steps (a)-(e) until the requirement is met. 

For the direct problem, the procedure is essentially the same, except that the 
body co-ordinates should be adopted, and /3 is a parameter rather than an 
assumed number. Consequently, we have to solve a pair of simultaneous equa- 
tions, (25) and (35 b).  One pair of roots is the required /3 and yo. Once /3 and yo are 
known, the rest of the calculation is straightforward. 

The standoff distances for second iteration are given in table 2, along with 
those given by the first iteration. The constants in the entropy equations were 
determined by the conventional procedure. 

turn, determine all other coefficients. 

Standoff distance 
A 

I 7 

Van Dyke & 
MCn y First iteration Second iteration Gordon (1959) 

3 1.4 0.133 0.1366 0.1351 
6 1.4 0.106 0.1091 0.1085 

104 1.4 0.0960 0.0990 0.0983 

TABLE 2. Standoff distances of spheres 

Figures 3 and 4 show the flow fields for spherical bodies calculated by the above 
formulas for M ,  = 6.0 and y = 1-4. The bluntness coefficient B, was chosen to 
be 0.47, which is the same as that given by Van Dyke & Gordon (1959). There are 
essentially two sets of curves plotted in these diagrams in addition to those of the 
third-order approximations and those obtained by numerical integration. One 
set of curves is based on constants in the entropy equations which were deter- 
mined by the conventional procedure, and the other on constant d which was 
determined approximately. (Even in the latter, the constant b was determined 
conventionally, since b appears in the second-order quantities and the iterated 
first-order quantities.) It turned out that at such high Mach number the differ- 
ences in the body shape and the sonic line in the two cases are so small that they 
are not discernible in this plot. Hence, no curve of the pseudo third-order approxi- 
mation, whose constant d is determined approximately, is plotted in figure 3. 
The gap between the dotted lines and the solid ones was actually somewhat en- 
larged, so that the diagram could be inked. There is, however, a difference in the 
pressure distributions on the surface of the two cases shown in figure 4. (The 
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curves in figure 4 are actually designated as the third order. However, they also 
refer to the pseudo third order, since to the order of approximation considered 
here they are the same.) Although the body in figure 3 appears to coincide with 
that by Van Dyke & Gordon, the radii of the spheres were found to be different, 
ours being 0.760 and theirs being 0.732. This perhaps indicates the somewhat 
arbitrary manner of fitting a sphere to the second-order body description. 

Since the experimental data shown in figure 4 were taken a t  stations on the 
sphere, we had to convert their locations to the values of S in the present co- 
ordinate system. The process of conversion involves the radius of the sphere. 
The one which we used was the radius of sphere obtained by the present calcula- 
tion. If we were to use the radius obtained by Van Dyke & Gordon, the experi- 
mental surface pressure distribution in figure 4 will be slightly shifted. 

The above example demonstrates the accuracy of the present method, at least 
for the flows past a sphere withrelatively high Mach numbers. It is, however, still 
of value to consider an example at relatively low Mach number, say M, = 3.0, 
and to examine its accuracy as compared with numerical results and experi- 
mental measurements. The flow field and the body configurations of this example 
are shown in figures 5 and 6. Again the bluntness coefficient B, was chosen to be 
the same as that given by Van Dyke & Gordon for this case; i.e. 0.25. Two ways 
to determine the constants in the entropy equations were considered. The results 
again indicate that the body configurations and the sonic lines for these two cases 
are almost identical to the scale we chose for the plot. Hence, only curves whose 
coefiicients were determined conventionally are plotted. The body configurations 
obtained by Van Dyke & Gordon appear to recede more than those computed 
by present method. This probably constitutes the reason that the surface pressure 
distribution in Van Dyke’s computation is much lower than ours (figure 6). The 
discrepancy is actually quite large near the sonic point. 

As a last example, we consider the test case given by Van Dyke (1965) of a 
paraboloidal shock wave with M,+co and y = 1.4. Unfortunately, the results 
obtained by the present method did not agree well with the results by the other 
methods. If we make the surface pressure distributions identical in the two cases, 
a discrepancy shows up in the body configuration, where there is approximately 
15 yo difference in radius. It was thought that this was due to the inaccuracy of 
the pseudo third-order approximation, since it uses a two-term description of the 
body shape, which determines only the body nose radius. For the paraboloid 
body this description may not be adequate. Consequently, the third-order 
approximation was calculated, but the improvement was rather insignificant. 
The same type of difficulty was encountered by Swigart (1963). 

Xwigart later suggested that if we replace sin 0 by sin S/( 1 + sin2 S)4 and cos 8 
by [I -sin28/(1 +sin28)]3 in the expansion scheme of (11)) the results may be 
improved. Following this suggestion it turns out that the final form of the second- 
order solutions remain unaltered, though (26)) (3  c) and (4 c) appear in the differ- 
ent forms provided that certain steps are taken in the algebraic manipulation. 
Computations were subsequently made, but the improvement was still unsatis- 
factory. The results are, nevertheless, tabulated in table 3 against those ob- 
tained by Lomax & Inouye which are considered accurate to four figures. The 
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values given by Lomax & Inouye in table 3 are their unpublished results based 
on their refined procedure (1964) , taken from Van Dyke's (1965) paper. 

In this table, M refers to the surface Mach number. In the computation of the 
present table, the coefficient d was evaluated approximately. If it  were deter- 
mined by the conventional procedure, the results would change slightly. We may 
conjecture that the discrepancy in the body shape is still due to the inadequacy 
of the pseudo third-order approximation. However, no third-order approxima- 
tions have been carried out yet, since the solutions given in the appendix can no 
longer be used without substantial changes. 

P 
0.9199 
0.8926 
0-8179 
0.7129 
0.5974 
0.4868 

~~ 

NASA results Present results - 
0.0989 0 0 0.9199 0.0987 0 0 
0.1089 0.12 0.208 0.8926 0.109 0.125 0-216 
0.1389 0.24 0.413 0.8179 0.139 0.245 0.434 
0.1896 0.36 0.614 0.7129 0.187 0.359 0-650 
0.2621 0.48 0.810 0.5974 0.250 0.465 0.860 
0.3576 0.60 0.998 0.4868 0.329 0.563 1.06 

h 
I 

X Y M P X Y M 

TABLE 3. Surface values for the test example 
(paraboloidal shock, M ,  = lo4, y = 1.4) 

7 

e 
0 
7" 57' 

15" 54' 
23' 49' 
31" 48' 
40" 0' 

6. Third-order approximation 
The differential equations, the boundary conditions, and the solutions are 

shown in the appendix. The solutions are obtained in a similar manner as shown 
above for the second-order solutions. They are in the form of the first iteration. 
The availability of these makes it possible to calculate the second iteration of the 
second-order solutions which can, in turn, be used to calculate the third iteration 
of the first-order solutions. Thus, it  completes the third cycle of improvement. 
However, no actual work has been carried out here, since the manipulation is 
rather lengthy. 

Although the complete third-order approximation has not been worked out, 
third-order approximations were calculated; namely, u3 and v3 terms are added 
in (26). The results of the third-order approximation for N, = 3.0 and N, = 6.0 
can be seen in figures 3-6. Both cases in which the coefficients were determined 
approximately and conventionally were considered. However, only curves of one 
case are plotted, unless the differences are large enough to warrant designation 
of two separate curves for two different cases in the plot. The pseudo third-order 
approximations (actually the second order) shown in figures 3-6 are all very close 
to the third-order approximations. This at  least demonstrates the self consistency 
of the scheme, especially when a mathematical proof of the series convergence is 
not feasible. 

7. Discussion 
In  the above we have used the expansion scheme to determine the flow field in 

the subsonic region. A natural question is the interdependence of the elliptical 
equations. In  the present case, since the expansion proceeds outward from the 
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stagnation region to the supersonic region, a given point is influenced by the 
conditions at other points downstream. In other words, the calculation of the 
first-order quantities is affected by the higher-order quantities which are subject 
to the boundary conditions away from the stagnation point. For instance, (14) 
contains the quantity v2. Similar situations exist in all higher-order equations. 
However, the coupling has been shown to be rather weak. For this reason we 
must perform the alternate calculations, since we are not able to work out higher 
iterations for any low-order solutions without taking into account the backward 
influence. The present approach is probably not an efficient method to treat a 
body with sonic corners, since the presence of a sonic corner generates large back- 
ward influence which is felt throughout the entire subsonic region. 

It is not clear, at present, what the appropriate expansion scheme should be 
for a particular type of body. As we have demonstrated, the scheme used above 
is particularly good for predicting the flow field over a sphere. Even if other 
expansion schemes are adopted, the procedures of the present analysis will remain 
valid. 

We have only considered the symmetrical eases in this study. However, exten- 
sion of the present formulation to the blunt body in a supersonic stream at a 
small angle of attack seems feasible. It may be perturbed about the flow at zero 
incidence as was carried out by Swigart (1963). 

The writer is indebted to S. A. Powers of Northrop Norair for his critical 
reading of the manuscript and to the referee for pointing out an algebraic error 
in the Northrop report (NOR 65-239, September, 1965) on which this paper is 
based. 

Appendix 
In  this appendix, equations, boundary conditions, and solutions of the third- 

order approximations are given without explanation. They are, however, 
labelled in such a way that we can easily associate them with the second-order 
counterparts. 

Governing equations: 

r(p1v3 +pZv2  + p3v1)' + ' ( p I v 3  + p2"Z +p3'1) - 6(P1u3 f P Z U 2  $-p3uI) = O ,  (' 
6u,u3+3u; u,v3+u 

r 
- V ~ U ~ - V Z U L - V ~ U ~ + - - -  - 

r r 
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Boundary conditions: 

Y + l  

16 P 
y +  1 re’ 

! 
P3s = -- 

1’ 

811 

1 ( 3 2 a )  

2u’(r ) 2u,(r0) +-] d’(r ) 
y = -  v 3 ( r 0 ) + , u [ ~ + v ; ( r 0 ) ]  + p 2 [ 2 - -  TO T i  2 . (35c )  

Ul(r0) 4 - + w;(ro) 
YO 

Differential equation for the tangential velocity component can be reduced to : 

2d 
2b P Y  P3r - ___ PT(P1 w2  + P 2  v1) r3 

ui+- u3 = -byp:-2pir-- 
r Y - 1  Y - 1  

6e 4Yd 1 
--pp:+2 vlr 2 5 - __ p;p2vlr3 + - (5w3 - 6w4). 

Y - 1  Y - 1  r 

This equation can be solved approximately as 

ti + Q6 1.6 + Q, r7 + Qs r8 + Q1o rlO, 
Q Q-, u -  - - + - + Q o + Q l ~ + Q 2 ~ 2 + Q 3 ~ 3 + Q 4 ~ + Q 5 ~  
r r2 

(21  a) 
where Q is an integration constant. The coefficients Q--2...Q10 are 

QP2 = -&N1G4, 

Qo = &X4GHi, 

Q,  = Q( -+N,AG3+2N4GH2+(p~N,G3/ypo)-N2G3),  

Q2 = +(poN5 J +  &N2G2E), 

Q3 = p 0 N 5 H 1 - + Z N 4 A H 1 ,  

Q4 = Q(+zNl A2G2 + N3G2-- +N4GH3 - +N4 AH2 + +N5 J2 - QNZAG’), 

Q5 = +( -QN2AGE-2N3GE+&N4GH4-$bpiN5GE/(~- l ) ~ ) ,  

Q6 = +N3 E2,  

Q, = Q( - i$gNlA3G + +N3AG + QN4GH5 ++N4 AH3 +QN5 J3), 

Qs = $(2aN2 A 2 E  - +N3AE -+N4AH4 ++N5 J4), 

1 N,A4 N3A2 N4AH5 N J N A 3  +15-1 
8 l o - -  7+---- 

-11( 36 6 
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where Nl = - b &  
4Y(Y-l)CPo’ ------I 2d 

N2 = - [(y:&c2 ( y -  1)c  

N3 = [ - ( y -  1)3c3 (2y-  l )+  ( y -  1)2c2 ( y -  1)c  
6e 

POP& 
b3Y 6bdy 

2b 
N4 = (nc PO? 

b 2 y  -___ 2d 
N5 = ( y -  1 ) 2 c 2  ( y -  1)c’ 

and 
1 a Q - 5  a-3 logr v3 = - - (p2v2+p3v1)  +- -~ -- + Q-2-+ ~ 

r2 r5 r3 r2  r Po 
+ Qo + Q,r + Q2r2 + Q3r3 + Q4@ + Q5r5+ Q2,r6+ Q2,r7+ Q,rs + Ql0rlo, (22a) 

where p2, v2, p3 and v1 are the known functions. The symbol is an integration 
constant. The symbols Q-5, CL3, . . . , QIO are the coefficients in terms of M,, y ,  and 
the shock configuration coefficients. They are 

Q- Y - 2  P t  

Q- - - - -G2H1,  9 Po 

2 2G5, 128 Y Po 

4 YPO 

5 -  

3 -  

. . .  . . .  
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